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ABSTRACT

This paper considers the problem of stabilizing a control system governed

by a combination of partial and ordinary differential equations. The partial

differential equations govern the evolution of the system in the interior of

some spatial domain, the ordinary differential equations describe the evolu-

tion of the boundary data; the control enters through the boundary ordinary

differential equations in a bilinear fashion. We provide sufficient condi-

tions for feedback stabilization of such 4hybrid* systems. Two examples to

wave equations with dynamic boundary conditions are provided.

AMS(MOS) Subject Classifications: 93B05, 93C10, 93C20, 93C25

Key Words: feedback control, distributed parameter systems,
bilinear control system.

Work Unit Number 1 (Applied Analysis)

t

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,

New York 12181 and the Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin 53706.

Department of Mathematical Sciences, Rensselaer Polytechnic institute, Troy,
New York 12181.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in

part by the Air Force office of Scientific Research, Air Force Systems
Command, USAF, under Contract/Grant No. AFOSR-81-0172. The United States

Government is authorized to reproduce and distribute reprints for Government
purposes not withstanding any copyright hereon.



SIGNIFICANCE AND EXPLANATION

In the control of distributed parameter systems i.e., systems governed by

partial differential equations, controls often times can be applied only on

the boundary of some spatial domain. In this paper we consider the case when

the controls enter the boundary conditions as bilinear (in the control and

state) ordinary differential equations. We show how we can synthesize feed-

back controls that will stabilize systems whose uncontrolled motion is

critically stable.

The responsibility for the wording and views expressed in this descriptive

sumary lies with MRC, and not with the authors of this report.



FEEDBACK STABILIZATION OF "HYBRID" BILINEAR SYSTEMS

M. Slemrodt and E. L. Rogers*

0. Introduction

In a recent paper [1] Burns and Cliff formulated a model of a "hybrid" system,

i.e., a mixed system of partial and ordinary differential equations, in which the

control enters only within the context of the ordinary differential equations.

Interest in such systems can be motivated by problems in structures in which the

control dynamics take place only in the boundary conditions of a distributed

parameter system. In this paper we consider two problems (motivated by the example

of Burns and Cliff) where the control enters the boundary conditions in a bilinear

fashion. Our goal is to synthesize feedback controls which will stabilize the

originally critically stable systems, i.e., we wish to find a feedback controls so

that the states of the feedback systems approach the zero state as t + 0.

The main tool of our analysis will be "hyperbolic" stabilization theory of Ball

and Slemrod [2], [3]. In fact the theory of (2], [3] may be readily applied to our

problem.

The paper is divided into five parts. Section I recalls the results on

feedback stabilization of [2], [3]. Section 2 introduces the first hybrid system.

Section 3 shows the feedback stabilizability of the first hybrid system. Similarly

Section 4 discusses the second hybrid system and Section 5 proves feedback

stabilizability for it.
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1. Feedback Stabilization.

Consider the initial value problem

u(t) - Au(t) + p(t) u(t), (P)

u(O) - u0 e x,

where A is the infinitesimal generator of a CO semigroup of contractions

eAt on a real Hilbert space X , 8 is a bounded linear operator X + X,

and p(t) is a real valued control. X is endowed with inner product

<0,0> x

x

Definition System (P) is stabilized (weakly stabilizable) if there

exists a continuous feedback control p:X + R such that (P) with p(t) -

p(u(t)) satisfies the following properties.

i) For each u0  there exists a unique weak solution of u(t;u 0 )

defined for all t e R, of (P).

(ii) (0) is a stable equilibrium of (P).

(iii) u(t,u0 ) + 0 (u(t,u0) + 0 weakly) as t + * in X for all

ue e x.

The natural approach to the stabilization problem is to differentiate

Iu(t)I - < u(t),u(t) > along trajectories of (P). In this manner we
x x

obtain

dIu(t)I2 . 2 < Au(t),u(t)> + 2p(t)<u(t),Bu(t)>aE x x

at least formally. An obvious choice of feedback control (though not the only

one) is

p(u) - -<uBU>x,

since this control yields the "dissipative energy inequality"

d 2 2lult)U 4 -2<u(t),Bu(t)>2x
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(Note that eAt a contraction means <Au(t),u(t)> 4 0, for u(t) e D(Afl.

So formally this choice of control p(u) yields a feedback system of that

form

u(t) = Au(t) - <u(t),8u(t)> u(t). (F)x

For the purposes of this paper the following theorem of Ball and Slemrod

[3] will be needed.

Theorem 1. If B: X + X is compact and

<eAt, BeAt > = 0 for all t e ==> P = 0 (C)

then (P) is weakly stabilizable.

In some aplications it will be convenient to work with second order

"hyperbolic" systems of the form

Y(t) + Ay(t) + p(t)By(t) = 0, (P')

y(O) = YO e HA# y(0) = Y1 e H.

Here H is a real Hilbert space with inner product <,*>H and norm

1012 = <0°> . A is a densely defined positive self-adjoint operator on
H H

H such that A- 1 is everywhere defined and compact. We suppose the eigen-

values A2 of A, n = 1,2, ° '*, 0 < X < X < ', are simple. We denote
n 1 2

the corresponding sequence of eigenfunctions by { n), Let HA = D(A/2 ).

HA form a Hilbert space under the inner product

<YoY*>A = <A12 y,A12 y*>.

Denote RolA as the norm of HA. We assume B is a bounded linear map : H A H.

Again the function p(t) is a scalar real valued control.

If we set
y(t) o

u(t) ( ), A 0-A o

=B 0 0) D(A) = D(A) x H_B 0 A

-3-



X - HA x H with <(Y,;),( *,;)>x = <Y'Y >HA + <;yy >

we see A,8 are required for problem (P) above. we can now state t':e theorem

of Ball and Slemrod given above in a second order context (see [2] for a

generalization).

Theorem 2. Suppose A and B are as above. Assume B : HA + H is compact

and

(Hi) <B0kP k>H * 0 for k = 1,2,eeo

(H2) A tI * 2Ak  unless m = n = k and the + sign is taken,m n k

or both <B$m, n>H and <B np>mH are zero.

Then the feedback system

Y(t) + Ay(t) + <By(t),y(t))H By(t) = 0 (F')

with

p(y(t),y(t)) = <By(t),y(t)>H

and the initial data y(O) = y0 e HA' y(0) = yl e H possesses a unique

globally defined weak solution (y,y) e C((0,-);H A x H) and (y(t),y;t)) +

(0,0) weakly in X = HA x H as t and (P') is weakly stabilizable.

Proof. B HA + H compact implies B X + X is compact and (Hi), (H2)

imply (C). See (21 for details.
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2. Hybrid system 1.

Motivated by the example in [1] we consider the string-mass system shown

in Figure 1. The string has length 1, constant linear density 0, and is

under constant tension T. The purpose of the device at the right end is to

maintain the tension, however it is idealized so as to provide no impedance to

the vertical motion at the end.

The vertical motion of the string is assumed to satisfy the linear wave

equation

z tt(t,x) = Zxx(t,x), 0 < x < 1, (2.1)

where CA2 = T/ > 0. The motion of the right hand end of the string is

governed by the balance of linear momentum. The relevant forces here are

acceleration of the point mass m, the tensile form on the string Tz x(t,1),

and external forces. We assume we can impose an external force at the right

end in the bilinear form p(t)z(t,1). In the absence of other external forces

the equation of balance of linear momentum of the mass m is

mztt(t, ) = -p(t)z(t,1) - Tz x(t,1). (2.2)

The left hand is assumed fixed at x = 0 so that

z(t,0) = 0. (2.3)

The initial conditions are

Z(0,X) = f(x), zt(0,x) = g(x), 0 < x < 1. (2.4)

-5- J
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2. Hybrid system 1.

Motivated by the example in [1] we consider the string-mass system shown

in Figure 1. The string has length 1, constant linear density a, and is

under constant tension '. The purpose of the device at the right end is to

maintain the tension, however it is idealized so as to provide no impedance to

the vertical motion at the end.

The vertical motion of the string is assumed to satisfy the linear wave

equation

z t(t,x) = C2zx(t,x), 0 < x < 1, (2.1)
tt xx

2
where Q 2 T/0 > 0. The motion of the right hand end of the string is

governed by the balance of linear momentum. The relevant forces here are

acceleration of the point mass m, the tensile form on the string Tz (t,1),x

and external forces. We assume we can impose an external force at the right

end in the bilinear form p(t)z(t,1). In the absence of other external forces

the equation of balance of linear momentum of the mass m is

mz tt(t,l) = -p(t)z(t,1) - Tzx (t,1). (2.2)

The left hand is assumed fixed at x = 0 so that

z(t,O) = 0. (2.3)

The initial conditions are

z(0,x) = f(x), zt(Ox) = g(x), 0 < x < 1. (2.4)
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3. Abstract formulation of the hybrid system 1 and feedback stabilization.

For the hybrid system (2.1)-(2.4) set

z(t,x)
y(t) = ) where z (t) z(t,l).

(lt)

Also define the operators

2 01

dx2  0 0

m dx 
j=0

where D(A) = {(z,z ) e H 2(0,1) x R ; z(0) = 0, z(1) = z }. Set

2
H = L (0,I) x R where H is a Hilbert space endowed with the inner product

* *)>H 1 '1vx~*xdx+ *

<(v,w), (v ,w)> = J v()v(x)dx + D w w*•
H a2 0a 0

Clearly D(A) is dense in H. of course we see that now (2.1)-(2.4) has the

form (1.1).

Lemma 1. A is a positive definite, self-adjoint operator on H, with bounded

inverse A- 1.

* *

Proof. We first prove A is symmetric, i.e., <A(vw),lv ,w )> HH

<(v,w),A(v ,w )>H for all (v,w),(v ,w ) e D(A) where D(A) c D(A). To

see this simply compute

<A(v,w),(v ,w )>H = fl v'(x)v' (x)dx (3.1)
0

= <(v,w),A(v ,w )>H

Furthermore since for (v,w) e D(A) we have v(x) = JX v'(x)dx d (fl2()2
0 0

and hence the inequality

sup Iv(x)l 2 + flv(x)2 dx const. fl v,(x)2 dx. (3.2)
04X41 0 0
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Thus from (3.1) we have

<A(v,w),(v,w)>H - const.I(v,w)I H const. > 0, (3.3)H'

i.e., the operator A is accretive. By the Schwarz inequality w have

NA(V,w)lHO(V,W) H ;P consto fR(v,w)1 2

H H H

and hence

aA(v,w)|H H const. |(v,w)|H  (3.4)

Thus A possesses a bounded inverse on H. Hence R(A) = H and a well known

result (e.g. see Yosida [4; p. 199]) shows D(A ) c D(A) and A is self adjoint.

Inequality (3.3) shows A is positive definite 0

-1
Lemima 2. A : H + H is compact.

Proof. Let [(v nWn) be a bounded sequence in H and set A-1 (v nW) =

(ZnZin), n 1,2,&** Since A- I is bounded I(znzIn)IH 4 const. for

all n. Also since

- 2 z x) = v x), T w ( (3.5)
d 2n n m dx n

Multiplication of the first equation in (3.5) by z and integration by parts

n

yields

~2 P z'(x) 2dx - a12 1z (i) + P z xWv (x)dx
n n n n n
o2 m

t 2 z n M)wn + f z n(x)v n(x)dx (3.6T 0

= 12 <(zn Zn ),(vnWn)>

2 Q2 1(Z In )H I(V nw n ) < const.



Since P' z'2 (x)dx ) f2 z2(x)dx by (3.2) we know (z} lies in a bounded set
0 

0

of HI(0,1). Since the injection of HI(0,I) into L2 (0,1) is compact {z }n

possesses a convergent subsequence in LI(0,I). Since {z In} is a bounded

sequence in R it certainly contains a bounded subsequence. Hence A- 1 maps

bounded sets of H into precompact sets of H and hence is compact. 0

2 2
Lemma 3. The eigenvalues of A are given by a sequence 0 < X < 2 <

where {A } are the increasing positive roots of
n

are the associated eigenvectors.

Proof. If X2  is an eigenvalue of A , then
-2 - A2 z , 0 < x < , dx 2z()

dx2 m dx

and z(0) = 0, where (z(x),z(1)) is the associated eigenvector. Thus z(x)

= sin(.)x and

, tant C

Lemma 4. B is a bounded linear self-adjoint operator H + H.

Proof. IB(v,w)l = I(0,-)I H 4 const. I(v,w)l so B is bounded. Also
H m H H

<B(v,w),(v ,w )> = - ww = <(v,w),B(v ,w )> so B is symmetric and
H T H

bounded, hence self-adjoint.

Lemma 5. <B(sinnX, snAn ), (sinAn x' sinAn ) >H * 0 for n =1,2,*°

sin2

Proof. <B(sinX, sinA ),(sinA x, sinA )) - 0.n n n H n

-9-



Lemma 6. For the eigenvalues of A we know A ± in * 2Xk  unless m=n=k

and the + sign is taken.

Proof. Assume A + An = 2A k. Divide by a and take tan of both sides.

We then have A A 2Ak

tan(- i A tan(--)

which in turn implies by the usual trigonometric identities

A A Ak
tan(m) an ) = tan-

A A 2 Ak "
1 T tan( ) tan(-2) 1 - tan

We now use the definition of A (Lemma 3) to assert
n

(X-1 X- V X-1
ma ma k

1 (L 2 A-1X- 1 - T ) 2 XA2
mG m n ma kor

(An tA) 2Ak

A T _)2 A2 (T )2
a n ma k ma

We now have two cases to consider.

Case 1. A + A 2Ak.a n

2 2 2 2
In this case (3.7) implies Am A n Ak But since A m + An + 2A A 4Ak  we

see (A - A 2 = 0 and A A = Ak.

Case 2. A -A - 2Ak "

In this A - Am - -2Ak  and (3.4) implies

AA + + (T 2

m n ma k me
or

-10-



A = -A2 which contradicts the positivity of
mn k n

This completes the proof. 0

Theorem 3. The feedback system (2.1), (2.2) with

z t(t,1)z(t,1)

p (t) =

possesses a unique globally defined weak solution for initial data (f,f(1)) e

HA. (g,g(1)) e Ii, ((y,yl), (y,y1 )) + ((0,0),(0,0)) weakly in H A x H as

t + o, and (2.1), (2.2) is weakly stabilizable in HA x H.

Proof. Lemmas 1-6 show the hypotheses of Theorem 2 are satisfied. 0

-11-



4. The hybrid system 2.

Suppose G is a domain in R3  filled with a compressible fluid which is

at rest except for accoustic wave motion. If O(x,y,z,t) is velocity

potential, so that -VO is the particle velocity, then linearized theory says

that f satisfies the wave equation

*t c2 A in G, (4.1)
tt

where c is the speed of sound in the medium, t is the pressure distribu-
t

tion ( = w(x,y,z,t)). Now suppose that the boundary of G 3G possesses a

non-rigid section r which is subject to small oscillations. We assume that

each point on rI reacts to the excess pressure of the accoustic wave like a

harmonic oscillator. We assume also that different parts of the boundary do

not influence each other, so that F is locally reacting. Then the normal

displacement 6 of the boundary F1  into G satisfies an equation of the

form

m 6tt + k6 - -P#t + f on r (4.2)

where P is the (assumed constant in linear theory) density of the fluid,

m,k are positive constants, and f is an applied external force on r I .  If

we assume the boundary section rI is impenetrable we obtain a third equation

from the continuity of velocity at the boundary,

6t = 80 on r (4.3)

where 3 is the outward normal velocity.3n

(This model has been given in [5], p. 263; a mathematical analysis is found in

-12-



(This model has been given in [5], p. 263; a mathematical analysis is found in

[6], and a discussion of linear control synthesis appears in [7].)

If we assume G is bounded and r u F u F = aG where r is a free1 2 3 2

surface then the pressure on F2 must take on the ambient atmospheric pres-

sure distribution. If we normalize this boundary pressure distribution to

zero we find

*t = 0 on r2. (4.4)

r3 is a rigid boundary so

- 0 on r3  (4.5)3n3

In this paper we consider the case where G is a right circular cylinder

with free surface at the top and reacting boundary at the bottom. This is

shown in Figure 2.

x= 0

! r3

x

Figure 2
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For simplicity we net c - P - m - k - 1. Also we seek a solution of

(4.1) - (4.5) * - *(x,t). in this case (4.5) is automatically satisfied.

Differentiation of (4.1) - (4.4) with respect to t yields the system

Vtt Vx O x(<1 (4.1')

8 tt+ 8 - -W t(t,I) + v(t)w(t,1), x - 1, (4.2')

et -w x (4.3')

W M0 X - 0, (4.41)

where 8 i 6 tand we have synthesized the external driving force f'(t)

v(t)w(t,1), i.e., we are looking for a feedback which then multiplies the

observed pressure at x - 1. of course we must also specify initial

conditions

W(O,X) -WOWx, wt(Ox) -w 1(x), 8(0) - 0, 8t - e,0 < x < 1.

-14-



5. Abstract fromulation of hybrid system 2 and feedback stabilization.

For the hybrid system (4.1') - (4.4') set

w 0
W w t0

t xxuU = Au Bue

1o6 t  -6 - w t(. w(.,1)

X = {(w,wt,@,'t) w e H I(0,i), w e L2(0,1), 8 e R, t e R, w = 0 at x = 0}

endowed with inner product

<u,u> = f 1w + )dx + 08 + 8 8
0 x tt

D(A) =  ((w,tt,, t) e X; w e H 2(0,1), w e H (0,1),

w t = 0 at x = 0 , 8t = w at x=1}.t x

Since for w e H1 (0,1) the Sobolev lemma ([4], p. 174]) says w can be viewed

as an element of C(0,1) after possible modification on a set measure zero,

we shall take such w as a continuous. So for w e H1 (0,0), w = 0, w is

identified as a continuous function which satisfies

w(x = Px w'(x)dx
0

in the Lebesgue sense. Hence the boundary value w(l) is simply

w(1) = flw'(x)dx. (5.1)
0

it is in this sense that the boundary conditions in X and D(A) are to be

understood.

We note for u e D(A), <Au,u>X = 0 so A is certainly dissipative. A is

also densely defined and Range (I-A) = x (by a direct computation) so the

Lumer-Phillips Theorem (4] implies, A is the infinitesimal generator of a

C. semigroup of contractions eAt on X. Also we note that if (u n ) is a

bounded sequence in X , (5.1) shows {w ()) to be a bounded sequence in
n

3. Hence it possesses a convergent subsequence. Thus 5 X * X is compact.

-15-



All the hypotheses of Theorem 1 are satisfied modulo showing thdt the only

solution of <eAt*, eAt., 0 for all t e k* is ' 0. In this problem

<eAt*, e,> = 8tw(1.t)

where w,O are solutions to the uncontrolled (p :- 0) system (4.1') -

(4.4'). Separation of variables shows
w iok t  -iokt

w(Xt) (Ake + ke k sin kX , (5.2)
k-1

ic k t -jo kt
0t(t)- (A ke  + Ake a kocS k  (5.3)

k-1

where ak  are the positive roots of
kI

tan= 0. (5.4)0

Here denotes complex conjugate. If we substitute (5.2), (5.3) into the

+equation tw(i,t) = 0 for all t e R , we obtain

2 IA I 2Oksin a K os Or Y
k=1

i2t -2 "i2t
+ 2 ' + A )a sink coso

k-1 ( k k k k

+ 7 (AkAn ie n  k t + An k a n- k

n,k-1
n*k

Si(0 n- k)t i(O k-n)t)

+ An Ake + An~e O sin Ok Cos Ok n

-0 for all t e . (5.5)

The terms on the left hand side of (5.5) form an almost periodic function in

t. If none of the frequencies appearing in the second sum appear in the first

and third sums the uniqueness theorem for almost periodic functions will imply

Ak - 0, k - 1,2,** * This in turn will imply w(x,t) - 0, t(t) =0 which

with (4.2') shows 1 0 will be the only solution of <eAt , eAtO> 0 for

all t e R+. So we now prove the following lemma.

-16-



Lemma 7. Let n be the positive roots of (5.4), 0 < 01 < 02 < a30n2 3

Then 0r i as  20k  holds only when r=s=k and + sign is taken.

Proof. For later use we record the first three positive roots of (5.4):

0 1 0.67625-9

2 = 2.11708o

0 3 4.921259oo

Case 1: Assume 0r + as = 20 k  Then taking tan of both sides and using (5.4)

r s k

402 -3a (1aa)2 a2 - a2 )2
k rs rs k (  k

Solving for ra we see 302 2

00 k (5.6)
rs 1 - ( k

(Note 002 * I so our manipulations are valid). If 02 < 2/3 or
r 9 k<23 o

a2 > I we see a 0 < 0 which violates positivity of the roots. Since
k rs
o2
0 2 (2/3,1) for all k, we see that 0 + s = 20 holds only when

k r s k

0r 0 as M ak, i.e., r=s=k.

Case 2. Assume 0r - as = 20k and proceed as in Case 1. We find this time

that

02 .1 + 1 (5.7)k o 0 -3
rs

If rs > 2, r * s, graphical analysis of (5.4) shows 0r - 0 ) 03 - 02

= 2.80417*** . So if 2 0 k a - 0 we must have 02 > 1.965- Also
r a k

we know for r,s ) 2 a 0 > 3. Hence from (5.7) we see that ifrs

ar - 0a - 20k  for r,s ) 2, r * s, that

-17-



< I -1.965.** ( 1 +
0 0-3
rs

for 3 < 0 0 < 4.035* * No pair 0rOs satisfy this relation.

On the other hand for r or s < 2 we can only have s I, r > . We

consider the set {0 } so thatr

1 + 1 a-3 - 4.48203 o -.o  (5.8)
aar 3  2

This set is the set of (0 } so that a 1 > 3.287186** or a > 4.8609 o-, ,r ir r

i. e., r > 3. So for r ) 3 the only way (5.7) can hold with s 1 1 is

when k - i, i.e., a -a - 201 or a -301. But there is no such a.r r 1 r

Finally if r - 2 we must have a2 -1 = 20k, i.e., ok - .720415 which

also cannot hold. The lemma is proven. ]

We can now conclude from the discussion preceeding Lemma 7 that the

following theorem is true.

Theorem 4. The feedback system (4.1') - (4.4') with

v(t) - - 0 (t)w(1,t)t

possesses a unique globally defined weak solution for initial data

(wvvw,@0,O1) e X and (w , wt,e ,8t ) 
+ (0,0,0,0) weakly in X as t +

and (4.1l)-(4.4') is weakly stabilizable.

-18-



i -5-

REFERENCES

1. J. A. Burns and E. M. Cliff, On control and identification of hybrid

systems, AIAA Symposium on Dynamics and Control of Large Space

Structures, Blacksburg, Virginia, June, 1981.

2. J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the

stabilization of distributed semi-linear control systems, Comm. Pure

and Applied Mathematics, Vol. XXXII, 555-587 (1979).

3. J. M. Ball and M. Slemrod, Feedback stabilization of distributed

semilinear controls, Applied Mathematics and Optimization, 5, 169-

179 (1979).

4. K. Yosida, Functional Analysis, Springer-Verlag: New York (1971)

5. P. Morse and K. U. Ingard, Theoretical Accoustics, McGraw-Hill: New

York (1968).

6 J. T. Beale, Spectral properties of an accoustic boundary condition,

Indiana Univ. Math. J., 25, 895-917, (1975).

7., R. E. O'Brien, Energy decay in weakly locally reacting boundary

value problems, to appear Indiana Univ. Math. J.

MS:ELR/db

-19-



SECURITY CLASSIFICATION OF THIS PAGE (UImeu Data gntere_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubettle) C TYPE OF REPORT & PERIOD COVEREDSummary Report - no specific

FEEDBACK STABILIZATION OF "HYBRID" BILINEAR reporting period
SYSTEMS S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 0. CONTRACT OR GRANT NUMBER(&)

M. Slemrod and E. L. Rogers DAAGZ9-80-C-0041

AFOSR-81-0172
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin 1 - Applied Analysis

Madison, Wisconsin 53706
11 CONTROLLI.G OFFICE NAME AND ADDRESS 12. REPORT DATE

April 1982
See Item 18 IS. NUMBER OF PAGES

19
14. MONITORING AGENCY NAME & ADDRESS(Idifferent frum Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of the Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

U. S. Army Research Office Air Force Office of Scientific Research
P. 0. Box 12211 Washington, D. C. 20332
Research Triangle Park
North Carolina 27709

IS. KEY WORDS (Continue on revere* side if neceeaary nd identify by block number)

feedback control, distributed parameter systems, bilinear control system.

20. ABSTRACT (Continue on reverse side If necesemy and identify by block number)

This paper considers the problem of stabilizing a control system governed
by a combination of partial and ordinary differential equations. The partial
differential equations govern the evolution of the system in the interior of
some spatial domain, the ordinary differential equations describe the evolu-
tion of the boundary data; the control enters through the boundary ordinary
differential equations in a bilinear fashion. We provide sufficient condi-

tions for feedback stabilization of such "hybrid" systems. Two examples to

wave equations with dynamic boundary conditions are provided.

DD , JAM7 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIF ICATION OF THIS PAGE (Phan Data Bntdwed)




